1、若直线在平面内或者直线与平面平行,此时直线与这个平面所成角是0°;
2、若直线与平面斜交,则找出这条直线在平面上的射影,则这条直线与这个平面所成角就是这条直线与它在这个平面内的射影所成的角。

求直线与平面交点方法是直接将直线和平面方程列方程组求解。平面是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。
平面是由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性(也就是说平面没有边界),又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。
求过三点的平面方程,用两直线的向量乘先求出平面的法向量(a,b,c),然后用利用定义可得平面方程为a(x-x1)+b(y-y1)+c(z-z1)=0。
“平面方程”是指空间中所有处于同一平面的点所对应的方程,其一般式形如Ax+By+Cz+D=0。空间坐标系内,平面的方程均可用三元一次方程Ax+By+Cz+D=0来表示。
由于平面的点法式方程A(x-x0)+B(y-y0)+C(z-z0)=0是x,y,x的一次方程,而任一平面都可以用它上面的一点及它的法线向量来确定,所以任何一个平面都可以用三元一次方程来表示。
1、已知ex求dx:∫e^x/(1+e^x)dx=∫1/(1+e^x)dex=∫1/(1+e^x),ex是概率论,概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。
2、例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
3、事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。