这类题一般分三种:已知体积和高的,就通过体积公式V=1/3*S*hs=π*r^2,可求出半径r。已知弧长L和侧面积s的则可以根据s=πrL可求出半径r。知道弧长L,和扇形的角度α,则可以根据公式:S=α/360*2πL,r=α/360*2πL/(2π)。
圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。

1、求圆锥半径公式:vb=πR²。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。
2、直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
1、求半径的公式:x=(l-r)*r/h。球心到某几何体各面的距离相等且等于半径的球是几何体的内切球。如果一个球与简单多面体的各面或其延展部分都相切,且此球在多面体的内部,则称这个球为此多面体的内切球。
2、立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。
1、根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:V=1/3Sh(V=1/3SH),其中S是圆柱的底面积,h是圆柱的高,r是圆柱的底面半径。
2、一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。